Seventh Semester B.E. Degree Examination, Jan./Feb. 2021 Operation Research

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting atleast TWO questions from each part.

PART - A

1 a. Write a note on the scope and limitations of Operation Research.

(06 Marks)

- b. A paper mill produces two grades of paper namely X and Y. Because of raw material restrictions, it cannot produce more than 400 tons of grade X and 300 tins of grade Y in a week. There are 160 production hours in a week. It requires 0.2 and 0.4 hours to produce a ton of products X and Y respectively with corresponding projects of RS 200 and Rs 500 per ton. Formulate the above as a LPP to maximize project and find the optimum product mix.

 (04 Marks)
- c. By graphical method solve the following LPP

Maximize $Z = 3x_1 + 4x_2$

Subject to $5x_1 + 4x_2 \le 200$

$$3x_1 + 5x_2 \le 150$$

$$5x_1 + 4x_2 \ge 100$$

$$8x_1 + 4x_2 \ge 80$$

and
$$x_1, x_2 \ge 0$$
.

(10 Marks)

- 2 a. Explain about degeneracy in linear programming problems. And explain how to resolve degeneracy in linear programming problems. (08 Marks)
 - b. Use two-phase simplex method to solve the problem:

Minimize $z = x_1 - 2x_2 - 3x_3$,

Subject to the constraints: $2x_1 + x_2 + 3x_3 = 2$,

$$2x_1 + 3x_2 + 4x_3 = 1$$

and
$$x_1, x_2, x_3 \ge 0$$
.

(07 Marks)

c. Give the outlines of simplex method of linear programming.

- (05 Marks)
- 3 a. Determine an initial basic feasible solution for the following TP using VAM.

Destination	n

		D_1	D_2	D_3	D_4	Supply
	\mathbf{F}_{1}	3	3	4	1	100
Factory	F ₂	4	2	4	2	125
	F ₃	$\supset 1$	5	3	2	75
Deman	nd 🥙	120	80	75	25	300

(10 Marks)

b. Find the IBFS by LCM and check the optimal solution by stepping stone method.

**/	D	Е	F	G	Capacity
A	4	6	8	6	700
В.	3	5	2	5	400
C	3	9	6	5	600
Requirement	400	450	350	500	

(10 Marks)

4 a. Solve the assignment problem represented by the following matrix:

(10 Marks)

	a	b	c	d	e	f
Α	9	22	58	11	19 63 45	27
В	43	78	72	50	63	48
C	41	28	91	37	45	33
D	74	42	27	49	39	32
E	36	11	57	22	39 25	18
F	3	56	53	31	17	28

b. Solve the travelling salesman problem given by the following data: $C_{12} = 20$, $C_{13} = 4$, $C_{14} = 10$, $C_{23} = 5$, $C_{34} = 6$, $C_{25} = 10$, $C_{35} = 6$, $C_{45} = 20$ where $C_{ij} = C_{ji}$ and there is no route between cities i and j if the value for C_{ij} is not shown? (10 Marks)

PART - B

- 5 a. Give Johnson's method for determining the optimal solution of sequence for processing 'n' jobs on two machines with an illustrative example: (14 Marks)
 - b. List the principal assumptions made while dealing with sequencing problems.

6 a. Explain the characteristics of Game theory.

(05 Marks)

(06 Marks)

b. Solve the following game by graphical method. Use the dominance rule to reduce the following game:

(15 Marks)

	A.	40	E	3	
	Æ	y 1	y ₂	У 3	y 4
. (\mathbf{x}_1	19	6	7	5
A.	X2	7	3	14	6
Α	X3	12	8	18	4
	X4	8	7	13	-1

7 a. Explain with a neat sketch about queueing systems?

(10 Marks)

- b. The rate of arrival of customers at public telephone booth follows Poisson distribution, with an average time of 10 mins between one customer and next. The duration of a phone call is assumed to follow exponential distribution, with mean time of 3 minutes:
 - i) What is the probability that a person arriving at the telephone booth will have to wait?
 - ii) What is the average length of the non-empty queues that form from time to time?
 - iii) The Mahanagar telephone Nigam Ltd. will install a second booth when it is convinced that the customers would expect waiting for atleast 3 minutes for their turn to make a call. By how much time should the flow of customers increase in order to justify a second booth?
 - iv) Estimate the fraction of a day that the phone will be in use.

(10 Marks)

8 a. Write the differences between PERT and CPM.

(04 Marks)

b. The following table shows the jobs of a project with their duration in days. Draw the network and determine the critical path. Also calculate all the floats. (16 Marks)

Jobs	1 – 2	1-3	1 - 4	2 – 5	3 - 7	4-6	5 – 7	5 – 8
Duration	10	8	9	8	16	7	7	7

Jobs	647	6-9	7 – 10	8 – 10	9 – 10	10 –11	11 –12
Duration	. 8	5.	12	10	15	8	5
